Week  Topics  Study Materials  Materials 
1 
Graph definitions and models, representation of graphs and morphisms


R. Diestel “Graph Theory” Springer

2 
Paths, cycles, degree sequences, special graphs


R. Diestel “Graph Theory” Springer

3 
Bipartite graphs, trees and distance, spanning trees


R. Diestel “Graph Theory” Springer

4 
Directed graphs


R. Diestel “Graph Theory” Springer

5 
Matchings and factors


R. Diestel “Graph Theory” Springer

6 
Independent sets and cliques, covers and dominating sets


R. Diestel “Graph Theory” Springer

7 
Maximum bipartite matching


R. Diestel “Graph Theory” Springer

8 
Hall matching condition, minmax theorems


R. Diestel “Graph Theory” Springer

9 
Connectivity and cuts


R. Diestel “Graph Theory” Springer

10 
Menger’s theorem and kconnected graphs


R. Diestel “Graph Theory” Springer

11 
Colorings of graphs


R. Diestel “Graph Theory” Springer

12 
Upper bounds and Brooks’ theorem


R. Diestel “Graph Theory” Springer

13 
Planar graphs, embeddings and Euler’s formula


R. Diestel “Graph Theory” Springer

14 
Colorings of planar graphs


R. Diestel “Graph Theory” Springer

15 
Final 1st week


R. Diestel “Graph Theory” Springer

16 
Final 2nd week


R. Diestel “Graph Theory” Springer




